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1. Introduction

For nearly 35 years, supersymmetry (SUSY) has been an attractive theory in particle

physics [1, 2]. At the most theoretical level, it permits the construction of string theories

which do not contain tachyonic states, and at the phenomenological level it offers a solution

to the hierarchy problem through its reduced ultraviolet divergences, as well as providing

resolutions of several puzzles arising in standard models of cosmology. It also gives rise to

a correction to the running of the couplings, so that the strong, weak, and electromagnetic

interactions can unify at some Grand Unified (GUT) scale.

However, to date there has been no reliable evidence that this theory describes Nature,

so that if SUSY is indeed realised in nature, it must be broken at a scale higher than that

reached in accelerator experiments conducted up to now. If the theory is to be effective

in providing a solution to the hierarchy problem, then the SUSY breaking scale cannot

be much more than about 1 TeV. This is also the scale of SUSY breaking which leads to

unification of couplings. Hence, with the exception of some hidden corners of parameter

space, SUSY can be discovered at the forthcoming LHC.

Clearly the most dramatic manifestation of SUSY would be the production and iden-

tification of supersymmetric partner particles such as the spin-1
2

charginos or neutralinos,

or evidence that at sufficiently high energies hadrons display behaviour consistent with the

existence of squarks or gluinos. However, the existence of SUSY will also have indirect but

measurable effects on the (total and differential) cross-sections for the production of Stan-

dard Model (SM) particles. The LHC is expected to achieve sufficient integrated luminosity

so that the statistical errors on these cross-sections are below the percent level. Assuming
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sufficient control over theoretical and experimental systematic errors, we will then be able

to detect the effects of higher order corrections coming from loops of SUSY particles. The

loops can give rise to a significant correction to the production cross-sections even below

the threshold for the production of the SUSY particles themselves, so that hints that some

new physics is imminent can be deduced before the threshold energies are actually reached.

Above these thresholds, differential cross-sections with respect to suitably chosen variables

can display structures which can be used to experimentally constrain the parameters of

the underlying model.

Due to its large mass the top quark decays predominantly via electroweak interactions.

Since the electroweak interactions violate parity, information about the spin of the top

quark is encoded in the angular distribution of its decay products [3]. To fully exploit

future experimental data we therefore need accurate computations (within the SM and

beyond) of polarised tt̄ production amplitudes, i.e. amplitudes for the production of tt̄

pairs with given helicities. Such amplitudes allow us to predict not only the total tt̄ cross

section but also single and double spin asymmetries like the ones discussed in [4]. Of

particular interest are parity violating asymmetries, since they are free of QCD related

systematic errors. Considering ratios of asymmetries and total cross sections also removes

systematic errors related to uncertainties in the incident beam flux.

The SM predictions for hadronic tt̄ production have already been calculated by several

groups. Tree level amplitudes were first considered in [5 – 10]. The next-to-leading order

(NLO) QCD corrections to unpolarised amplitudes have been calculated in [11 – 16] and the

electroweak contributions (O(αα2
s)) have been studied in [17 – 20]. Soft gluon resummation

and threshold effects have been considered in [21 – 25]. The NLO QCD and electroweak

corrections to polarised amplitudes are presented in [26 – 29] and [20, 30 – 34], respectively.

The estimates for the theoretical errors of these calculations lie at the percent level.

Partial studies of SUSY contributions to both unpolarised and polarised tt̄ production

amplitudes within the Minimal Supersymmetric SM (MSSM) also exist. The SUSY elec-

troweak corrections to unpolarised amplitudes are calculated in [35 – 37]. The same study

for polarised amplitudes is carried out in [30]. The NLO SUSY QCD (SQCD) corrections

to top production via gluon fusion (gg → tt̄) are presented in [38, 39]. Top production

via quark-antiquark annihilation is discussed in [40 – 42]. During the preparation of this

paper a complete study of NLO SQCD corrections [43] was also published. As pointed out

there, the results of [40 – 42] disagree due to an incorrect treatment of Majorana fermions

in box diagrams. For the SQCD corrections we see the same qualitative features as those

reported in [43], especially the structure of the differential cross-section with respect to the

invariant mass of the tt̄ pair. However, a precise numerical comparison of our results is not

straightforward due to a different choice of renormalisation schemes and is therefore not

carried out in this paper.

In this paper we present a complete study of SUSY QCD and electroweak corrections

to tt̄ production within the MSSM framework. We have organised our calculation so

that software is available to calculate differential cross-sections with all possible helicity

configurations and any given set of the extra 105 parameters of the MSSM. This provides

maximum flexibility for studying different SUSY breaking scenarios and exotic areas of
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the parameter space, even though a scan over all 105 parameters is clearly unrealistic.

Our code can read input parameters in the SUSY Les Houches Accord format [44], which

makes it easily combinable with other MSSM related software. As a first analysis we present

numerical results for the 10 ‘Snowmass’ benchmark points of the MSSM parameter space,

which were compiled at the Snowmass meeting of 2002 [45]. We find considerable variation

in the magnitudes of the corrections from these different parameter sets. Conversely, this

means that accurate measurement of the tt̄ production cross-section can be used as a tool

to help identify the correct set of SUSY parameters.

At sufficiently high (partonic) energies, the SUSY corrections to tt̄ production are

expected to be dominated by single and double logarithms of incoming parton energy

divided by the SUSY breaking scale, MSUSY. The determination of these logarithms is

independent of the SUSY parameter set, with the exception of MSUSY and the ratio, tan β,

of the vacuum expectation values of the two Higgs doublets, and the calculation is simplified

by the fact that the mixing of various SUSY particles to form mass eigenstates has no effect

on these logarithms. The logarithmic contributions have been calculated by Beccaria et.

al. [46]. One may have expected that it would have been possible to express the entire

SUSY correction in terms of these logarithms plus a constant off-set, which depended on

the SUSY parameter set. We have compared our results with those of [46] and although

it is indeed the case that our results agree with these logarithms plus a constant off-set at

sufficiently high partonic energies, this approximation is found to be unsuitable at typical

partonic energies which will be reached at the LHC, and the entire calculation is required

for a reliable prediction of the cross-sections at the LHC.

The structure of this paper is as follows: In section 2 we discuss the general method

for the extraction of the above-mentioned helicity matrix-elements at the partonic level

from a general Feynman graph. In section 3 we list all the prototype graphs and indicate

which supersymmetric particles can contribute for each of the prototypes. In section 4 we

discuss the results after folding the partonic cross-sections with PDFs and show the results

for the ten Snowmass benchmark points. Section 5 presents some conclusions.

2. Helicity matrix elements

Because we wish to discuss the total and differential cross-sections for given helicities of

the t- and t̄- quarks as well as the asymmetries, we find it convenient to work at the parton

level with generic processes

g(pa, λa) g(pb, λb) → t(p1, λ1) t̄(p2, λ2) ,

q(pa, λa) q̄(pb, λb) → t(p1, λ1) t̄(p2, λ2) ,

where g, t (t̄) and q (q̄) denote gluons, top and massless (anti-)quarks, respectively, pa, pb,

p1 and p2 are the corresponding four-momenta and λa, λb, λ1 and λ2 the helicities. The

amplitudes Agg/qq̄
λa,λb,λ1,λ2

(E, θ) for the processes above we call helicity matrix-elements and

consider them as functions of the partonic centre-of-mass energy E and scattering angle θ

(also in the centre-of-mass frame).
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In the case of quark-antiquark annihilation, for which we take the incoming quarks

and antiquarks to be massless, the helicities of the incoming partons are anti-correlated

(λa = −λb) at leading order. Although it is possible for this initial anti-correlation to be

violated at the one-loop level, the interferences at O(α3
s) or O(α2

sαW ) always respect this

anti-correlation. For the gluon fusion process there is no such correlation.

Once these helicity matrices have been determined, differential cross-sections and

asymmetries can be computed by convolution with the corresponding parton distribution

functions (PDF), summed over helicities or not, as appropriate.

A further potential advantage of computing helicity matrix-elements, although not

currently applicable at LHC, is the determination of initial beam polarisation asymmetries,

should it become possible in the future to polarise these beams. For interactions of a parity

violating nature such as SUSY corrections to weak interactions, such asymmetries would

be immensely useful in identifying the parameters of the supersymmtery model.

The helicity amplitudes are obtained in two stages. In the first stage, a set of coefficient

functions, a
{α}
λa,λb

(E, θ), of a complete set of spinor matrices is determined:

Aλa,λb,λ1,λ2
(E, θ) =

∑

{α}

a
{α}
λa,λb

(E, θ)ū(p1, λ1)Γ
{α}v(p2,−λ2) (2.1)

where Γ{α} are the matrices

Γµ
V = γµ

Γµ
A = γµγ5

Γµν
T = σµν (2.2)

with associated projection operators P {α}

Pµ
V =

1

4

(

γµ +
pµ
1

mt

)

Pµ
A =

1

4

(

γ5γµ + γ5 pµ
1

mt

)

Pµν
T =

1

8
σµν , (2.3)

such that

Tr
(

Γ{α}P{β}

)

= δ
{α}
{β} .

Note that the coefficient functions are independent of the helicities of the t- and t̄ quarks

For the basis vectors e0 · · · e3, where

eµ
0 =

1

2E
(pµ

1 + pµ
2 )

eµ
1 =

1

2Ep sin θ
(−(p + E cos θ)pµ

1 + (p − E cos θ)pµ
2 + 2p pµ

a)

eµ
2 =

1

2E2p sin θ
εµ
νρσpν

1p
ρ
2p

σ
a

eµ
3 =

1

2p
(pµ

1 − pµ
2 )
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pa(λa)

pb(λb)

p1(λ1)

p2(λ2)

Figure 1: Tree-level graph for t − t̄ production from quark-antiquark annihilation.

pa(λa)

pb(λb)

+ +

p1(λ1)

p2(λ2)

Figure 2: Tree-level graphs for t − t̄ production from gluon fusion.

(p being the magnitude of the three-momentum of the t-quark in the centre-of-mass frame),

the helicity matrix elements are given by1

A = 2
[

E
(

−a1
V + iλ1a

2
V

)

+ ip
(

a2
A + iλ1a

1
A

)

− imt

(

a01
T − iλ1a

02
T

)]

δλ1,−λ2

+ 2
[

mt a0
A − p a12

T − iE λ1a
03
T − mt λ1a

3
V

]

δλ1,λ2
(2.4)

Thus, for example, the non-zero coefficient functions for the quark-antiquark annihi-

lation process at the tree-level (figure 1) are:

a1
V = g2

s

cos θ

2E
δλa,−λb

(τ ⊗ τ )

a2
V = g2

s

iλa

2E
δλa,−λb

(τ ⊗ τ )

a1
V = g2

s

sin θ

2E
δλa,−λb

(τ ⊗ τ ) , (2.5)

where (τ ⊗ τ ) indicates the colour factor for a single gluon exchange. Inserting these

expressions for the coefficents into eq. (2.4) generates the helicity matrix-element

Aλa,λb,λ1,λ2
(E, θ) = −g2

s (λa + cos θ) δλa,−λb
δλ1,−λ2

(τ ⊗ τ )

−g2
s

mt

E
λ1 sin θ δλa,−λb

δλ1,λ2
(τ ⊗ τ ) , (2.6)

whereas for the gluon fusion process (figure 2), the non-zero coefficients are given by

a1
V =

g2
s

2E(E − p cos θ)
τ bτa {E sin θ (cos θ − 2) δλa,λb

+ 2p sin θ cos θ}

+
[

τa ↔ τ b, λa ↔ λb, θ → (π + θ)
]

a2
V =

ig2
s

2E(E − p cos θ)
τ bτap sin θ λaδλa,−λb

+
[

τa ↔ τ b, λa ↔ λb, θ → (π + θ)
]

1These matrix-elements are defined up to an overall phase, which may depend on the initial-state and

final-state helicities.
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a3
V =

g2
s

2E(E − p cos θ)
τ bτa

{

−E cos θ (cos θ − 2) δλa,λb
+ 2p sin2 θ

}

+
[

τa ↔ τ b, λa ↔ λb, θ → (π + θ)
]

a0
A =

g2
s

2E(E − p cos θ)
τ bτaλa (p cos θ − E) δλa,λb

+
[

τa ↔ τ b, λa ↔ λb, θ → (π + θ)
]

a12
T =

g2
s

2E(E − p cos θ)
τ bτamt cos θδλa,λb

+
[

τa ↔ τ b, λa ↔ λb, θ → (π + θ)
]

(2.7)

leading to a tree-level helicity matrix-element

Aλa,λb,λ1,λ2
(E, θ) =

g2
s

2E(E − p cos θ)
τ bτa

×
{

mt

[

2λ1

(

(E + p) cos2 θ − 2p − 4E cos θ
)

− 2λaE
]

δλ1,λ2
δλa,λb

[

−2E(E + p) cos θ sin θ + 4E2 sin θ
]

δλ1,−λ2
δλa,λb

−2λ1p mt sin2 θδλ1,λ2
δλa,−λb

−Ep sin θ (2 cos θ + λ1λa) δλ1,−λ2
δλa,−λb

}

+
[

τa ↔ τ b, λa ↔ λb, θ → (π + θ)
]

(2.8)

In the case of gluon fusion the contribution from any graph may be written in the form

ū(p1, λ1)Γv(p2,−λ2),

where Γ is a sum of strings of γ-matrices with coefficients that are proportional to couplings,

internal and external fermion masses and the Veltman-Passarino (VP) [47] functions arising

from the loop integrals. These VP functions have arguments that depend on the internal

and external masses as well as on the Mandelstam variables s, t, u. The coefficients a{α}

are simply projected by

a{α} = Tr
(

P {α}Γ
)

. (2.9)

For the quark-antiquark annihilation process there are two types of contributing graphs:

The first type are graphs for which the fermion lines can be factorised into an initial quark

line, Γi and a final t-quark line, Γf . Again these are sums of string of γ-matrices with

coefficients that are proportional to VP functions. In this case the coefficients a{α} are

projected by

a{α} = δλa,−λb
Tr

(

Γiγ · v
(

1 − λaγ
5
)

2

)

Tr
(

P {α}Γf

)

, (2.10)

where vµ is a vector in the plane normal to the incoming momenta pa and pb given by:

vµ =
1√

2E p sin θ

{

pb · p1p
µ
a + pa · p1p

µ
b − pa · pbp

µ
1 + iλaε

µ
νρσpν

ap
ρ
bp

σ
1

}
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p1(λ1)

p2(λ2)

pa(λa)

pb(λb)

Figure 3: Gluino, neutralino, or chargino exchange contribution to t − t̄ production from quark-

antiquark annihilation

p1(λ1)

p2(λ2)

pa(λa)

pb(λb)

Figure 4: Graph involving the exchange of intermediate Majorana fermions

The other type of graph is one in which the fermion lines do not factorise into an initial

fermion line and a final-fermion line, but rather into an upper line, Γu, and a lower line, Γd,

in which the incoming quark and outgoing t-quarks are connected by the exchange gluino,

neutralinos, and charginos,is the s-channel. It is graphs of this type that give rise to non-

zero amplitudes in the case where the incoming helicities are equal, but such amplitudes

do not interfere with the tree-level amplitudes. An example of such a graph is shown in

figure 3. For such graphs the coefficients a{α} are projected by

a{α} = Tr

(

Γdγ · v
(

1 − λaγ
5
)

2

)

ΓdP
{α} (2.11)

As in the case of most of the contributing graphs, the expressions obtained from figure 3

for the corrections to the coefficients are too long and unwieldy to be reproduced here.

Finally we note here that in several cases, the internal fermions exchanged in the s-

channel in such graphs may be neutralinos or gluinos, which are Majorana fermions. In such

cases supplementary graphs of the type shown in figure 4 need to be considered. Great care

needs to be taken in handling such graphs. The standard expressions for the propagators

of Majorana fermions in which a fermion propagates into a fermion or an anti-fermion

propagates into an anti-fermion, are ambiguous up to a sign until the exact ordering of

the fermions is determined. In order to ensure that this is effected in a consistent manner

it is necessary to determine the fermion ordering of the term in the Wick contraction

corresponding to the graph under consideration.

A library has been constructed both in FORTRAN and C++ in which each of the

prototype graphs shown in the next section can be determined numerically, as a function

of the incoming energy, scattering angle, helicities, couplings and internal masses. We have

checked all prototype graphs by selecting different routings of the internal loop momenta

and copmparing the results numerically. The numerical values of of the relevant VP func-

tions are determined either using the FF library [48] or LoopTools [49] These libraries can

be found at http://hep.phys.soton.ac.uk/hepwww/staff/D.Ross/susyttbar/
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3. Diagrams

In this section we list the diagrams needed for the computation of SUSY contributions to

polarised top-antitop production cross sections. To save space we only draw the different

topologies. For further reference, each topology has a label set in typewriter font. An as-

terisk behind the label indicates that the crossed version of this diagram has to be included

as well. A double asterisk indicates that only the crossed version is needed. First or second

generation quarks are labelled q and top quarks are labelled t. Gluons are denoted as g and

always represented by curly lines. Momenta and helicities are given in parentheses behind

the label. For example, t(p, λ) denotes a top quark with (four-)momentum p and helicity λ.

The generic scalar, vector and fermionic particles in each topology are given uppercase la-

bels S, V , F , etc. For each topology we provide a list of MSSM particles that have to be sub-

stituted for the generic ones. For the various MSSM particles we use the notations from [50].

However, unless stated otherwise the generation indices I, J , etc. only run over the first two

generations. The third generation quarks are written explicitly as t (= u3) and b (= d3).

3.1 Tree-level diagrams

The following prototype diagrams contribute to tt̄ production at tree-level:

q(k1, σ)

q(k2,−σ)

t(p1, λ1)

t(p2, λ2)

Dqqbar sV tree

V = γ, Z, g

g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)

Dgg sG tree

g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)

Dgg tF tree*

F = t
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3.2 Self-energy diagrams

For our calculation we only need to consider self-energy corrections for fermions and gluons.

The SUSY self-energy corrections to fermion propagators only come from scalar particles:

p pF (q)

S(p − q)

(3.1)

The s-channel gluon propagator gets SUSY corrections from fermion and scalar loops:

p
µ

p
ν

F (q)

F (q − p)

,
p

µ
p

ν

S(q)

S(q − p)

,
p

µ
p

ν

S(q)

(3.2)

The two scalar self-energy diagrams always appear as a pair with the same coefficient and

the same scalar particle in the loop. By inserting these self-energy corrections in

individual lines of the tree level diagrams we obtain the following self-energy diagrams:

q(k1, σ)

q(k2,−σ)

t(p1, λ1)

t(p2, λ2)

+

q(k1, σ)

q(k2,−σ)

t(p1, λ1)

t(p2, λ2)

Dqqbar sV xseSq

(q, F, S) = (uI , χ0
j , Ui), (dI , χ0

j ,Di), (uI , χj ,Di), (dI , χc

j, Ui), (uI ,Λ, Ui), (dI ,Λ,Di)

q(k1, σ)

q(k2,−σ)

t(p1, λ1)

t(p2, λ2)

+

q(k1, σ)

q(k2,−σ)

t(p1, λ1)

t(p2, λ2)

Dqqbar sV xseSt

(F, S) = (χ0
j , Ui), (χj,Di), (t,H0

i ), (t, A0
1), (b,H1), (Λ, Ui)
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q(k1, σ)

q(k2,−σ)

t(p1, λ1)

t(p2, λ2)

Dqqbar sG iseF, Dqqbar sG iseS

q = uI , dI , F = uI , t, dI , b,Λ , S = Ui,Di

g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)

+

g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)

Dgg sG xseFg, Dgg sG xseSg

F = Λ , S = Ui,Di

g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)

+

g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)

Dgg sG xseSt

(F, S) = (χ0
j , Ui), (χj,Di), (t,H0

i ), (t, A0
1), (b,H1), (Λ, Ui)
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g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)

Dgg sG iseF, gg sG iseS

F = Λ , S = Ui,Di

g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)

+

g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)

Dgg tF xseSt*

(F, S) = (χ0
j , Ui), (χj,Di), (t,H0

i ), (t, A0
1), (b,H1), (Λ, Ui)

g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)

+

g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)

Dgg tF xseSt*

F = Λ , S = Ui,Di
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g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)

Dgg tF iseS*

(F, S) = (χ0
j , Ui), (χj,Di), (t,H0

i ), (t, A0
1), (b,H1), (Λ, Ui)

In each diagram the hatched blob stands for one of the self-energy corrections from (3.1)

or (3.2).

3.3 Vertex corrections

The prototype vertex corrections for the qq̄ → tt̄ amplitude are:

q(k1, σ)

q(k2,−σ)

t(p1, λ1)

t(p2, λ2)

F (q)

Dqqbar sG vertSq

(q, F, S) = (uI ,Λ, Ui), (dI ,Λ,Di)

q(k1, σ)

q(k2,−σ)

t(p1, λ1)

t(p2, λ2)

F (q)

Dqqbar sV vertSt

q = uI , dI

(F, S) = (Λ, Ui), (t,H0
1 ), (t, A0

1), (b,H1)
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q(k1, σ)

q(k2,−σ)

t(p1, λ1)

t(p2, λ2)

F (q)

Dqqbar sG vertSSq

(q, F, S) =

(uI ,Λ, Ui), (uI , χ0
j , Ui), (uI , χj ,Di),

(dI ,Λ,Di), (dI , χ0
j ,Di), (dI , χj , Ui)

q(k1, σ)

q(k2,−σ)

t(p1, λ1)

t(p2, λ2)

F (q)

Dqqbar sG vertSSt

q = uI , dI

(S,F ) = (Λ, Ui), (χ0
j , Ui), (χj,Di)

For the gg → tt̄ amplitude we distinguish vertex corrections for s and t-channel dia-

grams. The corrections to the s-channel diagrams are:

g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)

F (q)

Dgg sG vertSt

(F, S) = (Λ, Ui), (t,H0
1 ), (t, A0

1), (b,H1)

g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)

F (q)

Dgg sG vertSSt

(S,F ) = (Ui,Λ), (Ui, χ
0
j ), (Di, χj)

g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)

F (q) −

g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)

F (−q)

Dgg sG vertFg

F = Λ
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g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)

S(q)

−

g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)

S(−q)

Dgg sG vertSg

S = Ui,Di

g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)

F (q) (C,D) +

g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)

F (−q) (C,D)

Dgg sS vertFg

F = t, b , S = H0
1 , A0

1

g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)

S1(q)
S2

(A,B) +

g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)

S1(−q)
S2

(A,B)

Dgg sS vertSg

S1 = Ui,Di , S2 = H0
1 , A0

1
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g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)

S1(q)

S2

Dgg sS vertSSg

S1 = Ui,Di , S2 = H0
1 , A0

1

The t-channel vertex corrections are:

g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)

F (q)

Dgg tF vertS1*

(F, S) = (Λ, Ui), (t,H0
1 ), (t, A0

1), (b,H1)

g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)

F (−q)

Dgg tF vertS2*

(F, S) = (Λ, Ui), (t,H0
1 ), (t, A0

1), (b,H1)

g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)

F (q)

Dgg tF vertSS1*

(S,F ) = (Ui,Λ), (Ui, χ
0
j ), (Di, χj)

g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)

F (−q)

Dgg tF vertSS2*

(S,F ) = (Ui,Λ)
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3.4 Box diagrams

q(k1, σ)

q(k2,−σ)

t(p1, λ1)

t(p2, λ2)
S2(q)

F1

S1

F2

(A,B)

(C,D)

Dqqbar boxSS

(q, S1, S2, F1, F2) = (uI , Ui, Uj ,Λ,Λ), (uI , Ui, Uj ,Λ, χ0
k), (uI , Ui, Uj , χ

0
k,Λ),

(dI ,Di,Dj ,Λ, χk), (dI , Ui, Uj , χk,Λ)

q(k1, σ)

q(k2,−σ)

t(p1, λ1)

t(p2, λ2)
F2(q)

S1

F1

S2

(A,B)

(C,D)

Dqqbar fboxSS

(q, F1, F2, S1, S2) = (uI ,Λ,Λ, Ui, Uj),

(dI ,Λ,Λ,Di, Uj), (uI , χ0
k,Λ, Ui, Uj),

(uI ,Λ, χ0
k, Ui, Uj), (dI , χ0

k,Λ,Di, Uj),

(dI ,Λ, χ0
k,Di, Uj)

q(k1, σ)

q(k2,−σ)

t(p1, λ1)

t(p2, λ2)
F2(q)

S2

F1

S1

(A,B)

(C,D)

Dqqbar fboxSSx**

(q, F1, F2, S1, S2) = (uI ,Λ,Λ, Ui, Uj),

(dI ,Λ,Λ,Di, Uj), (uI , χ0
k,Λ, Ui, Uj),

(uI ,Λ, χ0
k, Ui, Uj), (dI , χ0

k,Λ,Di, Uj),

(dI ,Λ, χ0
k,Di, Uj)

g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)
F (q)

Dgg boxFS*

(F, S) = (Λ, Ui), (t,H0
1 ), (t, A0

1), (b,Hi)

g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)
S(q)

Dgg boxSF*

(S,F ) = (Ui,Λ), (Ui, χ
0
j ), (Di, χj)
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g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)

S(q)

Dgg boxSF4

(S,F ) = (Ui,Λ), (Ui, χ
0
j ), (Di, χj)

g(k1, σ1)

g(k2, σ2)

t(p1, λ1)

t(p2, λ2)
F (q)

Dgg boxSFx*

(S,F ) = (Ui,Λ)

4. Cross sections and asymmetries

In this section we present our results for the SUSY corrections to polarised tt̄ production

cross sections, which we calculated for each of the 10 Snowmass benchmarks detailed

in [45]. The benchmarks 1a, 1b and 2 to 6 are derived from gravity mediated SUSY

breaking scenarios. Benchmarks 7 and 8 are related to gauge mediated SUSY breaking

and benchmark 9 comes from an anomaly mediated scenario. To calculate the masses of

the supersymmetric particles and run the couplings to the TeV scale we used the program

SOFTSUSY by B. C. Allanach [51]. The renormalisation scale µ of the scale dependent

MSSM parameters was set to the geometric mean of the two stop masses, in accordance

with the convention adopted in [51]. The decay widths of the MSSM Higgs particles were

calculated with the program HDECAY by Djouadi, Kalinowski and Spira [52]. The Feynman

rules for the MSSM vertices were taken from J. Rosiek’s paper [50]. We compare our parton

level cross sections with the results obtained in the leading log approximation [46]. Then

we discuss our results for the total pp → tt̄ cross section and double helicity asymmetries.

Let σ̂i denote the total cross section for the process i → tt̄, where the initial state i

can be a gluon pair (gg), a light up-type quark-antiquark pair (uū) or a light down type

quark-antiquark pair (dd̄). We regard σ̂i as a function of the variable ŝ ≡ M2
tt̄, where

Mtt̄ is the invariant mass of the top-antitop pair. For each of these cross sections we have

calculated the leading order contribution σ̂LO
i and the SUSY corrections σ̂SUSY

i due to the

diagrams listed in section 3. The SUSY corrections can be split into super-QCD (SQCD)

corrections and super-electroweak (SEW) corrections. The SQCD corrections are of order

O(α3
s) and the SEW correction of order O(αα2

s). Consequently the SEW corrections are

one order of magnitude smaller than the SQCD corrections. We also define the ratios

r̂i(ŝ) =
σ̂SUSY

i (ŝ)

σ̂LO
i (ŝ)

. (4.1)

Figures 5, 6 and 7 show a comparison of the full NLO ratios with the results obtained

in the leading log approximation by Beccaria, Renard and Verzegnassi [46]. We have

used Snowmass benchmark 5 to compute the cross section, but the observations stated

here are true for any of the 10 Snowmass benchmarks. The only SUSY inputs in the

leading log approximation are tan β and a universal SUSY mass scale MSUSY. Sensible
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Figure 5: SUSY corrections to the gg → tt̄ cross section in the full NLO calculation and the

leading log approximation for benchmark 5 of [45]. The thickness of the leading log graph reflects

the uncertainty due to the choice of the universal SUSY scale.
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Figure 6: SUSY corrections to the uū → tt̄ cross section in full NLO calculation and the leading

log approximation for benchmark 5 of [45]. The results for first and second generation up-type

quarks are identical. The width of the leading log graph reflects the uncertainty due to the choice

of the universal SUSY scale.

values for this scale lie anywhere between the mass of the lightest and the mass of the

heaviest SUSY particle. The thickness of the leading log graphs in figures 5, 6 and 7

reflect this uncertainty. We see that, in the leading log approximation, the ratios r̂SUSY
i

are proportional to log(ŝ/M2
SUSY). For ŝ & 109 GeV the NLO ratio runs linear with the
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Figure 7: SUSY corrections to the dd̄ → tt̄ cross section in the full NLO calculation and the

leading log approximation for benchmark 5 of [45]. The results for first and second generation

down-type quarks are identical. The width of the leading log graph reflects the uncertainty due to

the choice of the universal SUSY scale.

same slope, but with a constant offset to the leading log graph. For very large centre

of mass energies this offset becomes small compared with the lograithmic contribution.

Therefore our results agree with the leading log approximation in the high energy limit.

However, since we can see that the approximation to the corrections consisting of the

leading logarithm accompanied by the constant offset is only valid for square energies in

excess of approximately 108 GeV, it fails totally at energies accessible at LHC for which

the entire one-loop correction is needed.

To examine the dependence of these results on tan β we have calculated the ratios r̂i

(i = gg, uū, dd̄) for different values of tan β in the region where the graphs in figures 5, 6

and 7 run parallel with a constant offset. Figures 8 shows the tan β dependence of the

ratios r̂i at ŝ = 1014 GeV2. We see that there is only a weak dependence for tan β < 2 and

a neglegible dependence for tan β > 2. In this region the offsets ∆r̂SUSY
i between the full

NLO and the leading log graphs, which are shown in figure 9, depend on tan β, too.

To obtain the pp → tt̄ cross sections, the parton level cross sections σ̂i were folded with

the CTEQ6L1 set of the CTEQ v6.51 parton distribution functions [53]. The factorisation

scale was set equal to the renormalisation scale. For the proton-proton collision we assumed

a centre of mass energy of 14TeV. Let dσλ1λ2
/dMtt̄ denote the invariant mass differential

cross section for producing a top quark with helicity λ1 and an anti-top quark with helicity

λ2. Then we define

dσtot

dMtt̄
=

dσ++

dMtt̄
+

dσ−−

dMtt̄
+

dσ+−

dMtt̄
+

dσ−+

dMtt̄
, (4.2a)

dσLL

dMtt̄
=

dσ++

dMtt̄
+

dσ−−

dMtt̄
− dσ+−

dMtt̄
− dσ−+

dMtt̄
, (4.2b)
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Figure 8: The tanβ dependence of the ratios r̂gg, r̂uū and r̂dd̄ at ŝ = 1014 GeV2. The solid

lines are the results in the leading log approximation. Their thickness reflects the uncertainty with

due to the choice of the universal SUSY scale. The dashed lines are the results of the full NLO

calculation.
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Figure 9: The tan β dependence of the offsets ∆r̂gg , ∆r̂uū and ∆r̂dd̄ at ŝ = 1014 GeV2. These are

the differences between the solid and the dashed lines in figure 8. The thickness of the lines reflects

the uncertainty with due to the choice of the universal SUSY scale.

dσPV

dMtt̄
=

dσ+−

dMtt̄
− dσ−+

dMtt̄
. (4.2c)

For each combination we indicate the leading order and SUSY contributions by superscripts

‘LO’ and ‘SUSY’, respectively. The parity even combinations dσSUSY
tot and dσSUSY

LL are

dominated by the SQCD corrections. However, for the parity odd combination dσSUSY
PV the
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Figure 10: Leading order results for the invariant mass differential cross section. The renormali-

sation and factorisation scales are set to 464 GeV.
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Figure 11: Leading order results for the invariant mass LL asymmetry. The renormalisation and

factorisation scales are set to 464 GeV.

SQCD corrections are zero, since parity is conserved in super-QCD. For the asymmetries

and the SUSY corrections we define the ratios

rLO
LL/PV (Mtt̄) =

dσLO
LL/PV /dMtt̄

dσLO
tot /dMtt̄

, rSUSY
tot/LL/PV (Mtt̄) =

dσSUSY
tot/LL/PV /dMtt̄

dσLO
tot /dMtt̄

. (4.3)

Figures 10 and 11 show the results for dσLO
tot /dMtt̄ and rLO

LL(Mtt̄), respectively, with

a renormalisation scale µ = 464GeV (corresponding to the geometric mean of the stop
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Figure 12: SUSY corrections to the invariant mass differential cross section for the Snowmass

benchmarks. The numbers in the legend refer to the labelling of the benchmarks in [45].
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Figure 13: SUSY corrections to the invariant mass LL asymmetry for the Snowmass benchmarks.

The numbers in the legend refer to the labelling of the benchmarks in [45].

masses in benchmark 1a). Since there is no parity violation at leading order the ratio rLO
PV

is identically zero.

Figures 12 and 13 show the ratios rSUSY
tot (Mtt̄) and rSUSY

LL (Mtt̄) for each of the 10

Snowmass benchmarks. The renormalisation and factorisation scales are set, for each

benchmark, to the geometric mean of the stop masses. The numerical values are shown
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Figure 14: SUSY corrections to the invariant mass PV asymmetry for the Snowmass benchmarks.

The numbers in the legend refer to the labelling of the benchmarks in [45].

in table 1. We have added up the super-electroweak (SEW) and super-QCD (SQCD)

corrections, but the SEW corrections are negligible compared to the SQCD corrections.

We see that the SUSY corrections to the tt̄ cross section can be as large as 10% of the

leading order cross section, but typically only reach the 5% level. In both plots we see

“resonance peaks” located at the masses of the heavy and the pseudo-scalar Higgs (H0
1

and A0
1 in the notation of [50]). They come from the scalar s-channel propagators in the

diagrams labelled Dgg sS vertFg, Dgg sS vertSg and Dgg sS vertSSg in section 3. Note

that due to the fermion triangle the sign of the diagram Dgg sS vertFg is opposite that

of Dgg sS vertSg and Dgg sS vertSSg. This explains why we get “troughs” instead of

peaks for some of the benchmarks. Also note that, for all 10 benchmarks, the difference

of the heavy and the pseudo-scalar Higgs masses is much smaller than their decay widths.

Consequently we can only see two distinct peaks when these peaks have opposite signs.

The kinks occurring between 1 and 2TeV coincide, for each benchmark, with twice the

gluino mass and can therefore be understood as a threshold effect due to the box diagrams

Dqqbar fboxSS and Dgg boxFS.

Figure 14 shows the SUSY corrections to the parity violating asymmetry for each of the

10 benchmarks. Here the resonance peaks are absent, because the diagrams Dgg sS vertFg,

Dgg sS vertSg and Dgg sS vertSSg are parity-conserving. Furthermore, the SUSY cor-

rections to the parity violating asymmetry are one order of magnitude smaller than the

corrections to the parity-even observables, because it only gets super-electroweak contri-

butions of order O(αα2
s).

By integrating the differential cross sections (4.2) over Mtt̄ we obtain cross sections for

producing tt̄ pairs with arbitrary invariant mass. We define the cross sections σtot, σLL
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µ σLO
tot σSUSY

tot σLO
LL σSUSY

LL σSUSY
PV

1a 465 331.8 +8.5 91.99 +1.83 +0.063

1b 719 288.3 +6.9 79.50 +1.74 +0.020

2 1100 266.3 −1.0 72.84 −0.33 +0.125

3 713 289.5 +6.9 80.08 +1.75 +0.043

4 595 307.6 +7.2 85.62 +1.68 −0.018

5 402 332.1 +19.9 93.48 +5.19 +0.111

6 559 310.8 +7.4 85.74 +1.73 +0.053

7 820 284.9 +3.5 78.04 +0.80 +0.029

8 1013 271.2 −1.9 74.08 −0.62 +0.035

9 992 263.6 +6.9 72.32 +1.83 +0.019

Table 1: Numerical results for the integrated tt̄ cross section and asymmetries. The numbers

in the left column refer to the labelling of the Snowmass benchmarks in [45]. The renormalisation

scale µ in the second column is given in GeV. The superscripts ‘LO’ and ‘SUSY’ indicate leading

order results and SUSY corrections, respectively. The cross sections are given in pico-barns (pb).

and σPV by

σtot/LL/PV =

∫ Mpp

2mt

dMtt̄

dσtot/LL/PV

dMtt̄
, (4.4)

where mt is the top mass and Mpp = 14TeV is the invariant mass of the proton-proton

system. Again, the leading order and SUSY contributions are indicated by superscripts

‘LO’ and ‘SUSY’, respectively. Table 1 summarises our results for these cross sections. For

both, σtot and σLL we see that the SUSY corrections typically make up 2% of the leading

order results. However, they can be as big as 5% in the case of benchmark 5 and as small

as 0.3% in the case of benchmark 2.

Experimentally it is often more convenient to parametrise the tt̄ production cross

section by the transverse momentum pT of the top quark. For the transverse momentum

differential cross section dσλ1λ2
/dpT we define the total differential cross section dσtot/dpT ,

the asymmetries dσLL/dpT and dσPV /dpT and the ratios rLO
LL(pT ), rLO

PV (pT ), rSUSY
tot (pT ),

rSUSY
LL (pT ) and rSUSY

PV (pT ) in analogy to (4.2) and (4.3). Our results for these quantities are

shown in figures 15 to 19. We note here that the “resonance peaks” and “troughs” from

the thresholds for scalar particle exchange are smoothed out by the phase-space integration

which means that Mtt̄ is a far better variable in which to analyse the data in order to extract

information on the SUSY parameter set, although we note that some of the benchmarks

give rise to an enhancement of the differential cross-section of up to 7% at large pT .

5. Conclusions

We have calculated the complete MSSM corrections to the cross-section for tt̄ production

at the LHC. The calculation has been set up in terms of prototype Feynman graphs for the

polarised amplitudes at parton-level. These prototypes are independent of the underlying

model and can be re-used for studying the effects of other BSM physics on top-quark

– 24 –



J
H
E
P
1
1
(
2
0
0
7
)
0
4
1

10−3

10−2

10−1

100

101

d
σ

L
O

to
t
/d

M
tt̄

[p
b

G
eV

−
1
]

0 100 200 300 400 500
pT [GeV]

Figure 15: Leading order results for the transverse momentum differential cross section.
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Figure 16: Leading order results for the transverse momentum LL asymmetry.

production. In a second step we used these prototypes to construct a numerical library that

computes the MSSM corrections for arbitrary values of the full set of MSSM parameters.

As a first analysis we have calculated numerical results for the ten Snowmass bench-

mark sets using the CTEQ PDFs. We find a considerable variation of the effects of the

one-loop SUSY corrections between the various benchmarks. The benchmark giving the

largest correction is benchmark 5, which is a super-gravity model with small tan β = 5

and a large negative tri-linear coupling, A0 = −1000 GeV. These large corrections can be

understood from the fact that this large tri-linear coupling generates a light stop mass
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Figure 17: SUSY corrections to the transverse momentum differential cross section for the

Snowmass benchmarks. The numbers in the legend refer to the labelling of the benchmarks in [45].
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Figure 18: SUSY corrections to the transverse momentum LL asymmetry for the Snowmass

benchmarks. The numbers in the legend refer to the labelling of the benchmarks in [45].

(258 GeV) thereby enhancing graphs involving a stop mass inside the loop. This gives an

enhancement of 6% in the total production cross-section.

Whereas the corrections for the other benchmarks are somewhat smaller, they are

usually around 3% and therefore comparable to the weak corrections calculated by Bern-

reuther et. al. [31] and Kühn et. al. [20]. Note that whereas the weak corrections reported

in [31, 20] decrease the prediction for the cross-sections, the SUSY corrections have a

positive sign for most of the benchmarks considered.
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Figure 19: SUSY corrections to the transverse momentum PV asymmetry for the Snowmass

benchmarks. The numbers in the legend refer to the labelling of the benchmarks in [45].

Statistically, we expect these events to be easily detectable given the anticipated yield

of order 107 events over the period of running of the LHC. We have found similar corrections

in the asymmetry ratios defined in in (4.2) and (4.3). For these asymmetries we also expect

cancellation of systematic errors arising from uncertainties in incoming parton fluxes and

tagging efficiencies, so that these corrections of order 3% would exceed the statistical errors

by a factor of ∼ 100.

Given corrections of such significance, it is reasonable to assume that corrections in the

differential cross-sections will also be detectable (provided sufficiently large bins are taken).

We have therefore plotted the differential cross-sections with respect to the invariant mass

Mtt̄ of the tt̄ system and also with respect to the transverse momentum pT of the t-quark.

In the former case, the differential cross-sections display an interesting structure with peaks

and/or troughs corresponding to thresholds for scalar particle exchanges in the gluon fusion

process.

We have also determined the SUSY contribution to the parity odd helicity asymmetry.

This receives only contributions from the supersymmetric partners in the weak-interaction

sector, which are suppressed relative to the SQCD corrections by O(αW /αs). It would

appear, therefore that even for benchmark 5, which produces the largest corrections, such

parity violating asymmetries will be too small to observe.
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